NEW ROUTES TO 1α-HYDROXYVITAMIN D₃ Philip J. Kocienski, Basil Lythgoe and Ian Waterhouse Department of Organic Chemistry, The University, Leeds LS2 9JT

The sulphone (2) and the methyl ester (3, R=H) were used in stereoselective syntheses of derivatives of 1α -hydroxyprecalciferol₃ and 1α -hydroxytachysterol₃, which were then converted into the title compound.

 1α -Hydroxyvitamin D_3 (7), which is highly active in promoting calcium transport in man, is also of interest as a model for the development of synthetic routes to the hormone, 1α ,25-dihydroxyvitamin D_3 . The 1α -hydroxyvitamin has been obtained from 1α -hydroxycholesterol, and also by a total synthesis in which the diacetate (8, R=Ac) of 1α -hydroxyprecalciferol, was obtained by the union of fragments corresponding to rings \underline{A} and \underline{CD} so as to generate the 7:8-bond, and was then subjected to thermal isomerisation. We now report new routes to derivatives of 1α -hydroxyprecalciferol, in which appropriate \underline{A} and \underline{CD} fragments are united to generate the central 6:7-double bond.

Conjugated en-yn-enes V·C;C·V¹, where V and V¹ are vinyl or substituted vinyl groups, can be obtained³, with retention of the original vinyl group geometries, from primary allylic aryl sulphones VCH₂SO₂Ar and conjugated methyl esters V¹CO₂Me; semihydrogenation of the triple bond then provides a stereoselective route to the central-cis- conjugated triene. In order to obtain 1α -hydroxyprecalciferol₃ by this approach we required the protected methyl ester (3, R= Bu^tMe₂Si) (the corresponding dihydroxy-acid has been described²), and the p-tolyl sulphone (2). This sulphone, m.p. 85-86°, [α]_D-25.4° (CHCl₃), was prepared in 92% yield from 8-hydroxymethyl-des-<u>AB</u>-cholest-

8-ene (1)⁴ by conversion into the corresponding chloride, followed by reaction with sodium toluene-p-sulphinate in dimethylformamide. The allylic alcohol (1) has been obtained by total synthesis by reduction of the corresponding aldehyde⁵. Recently⁶ it has been obtained from cholesterol by degradation in an overall yield of 22.5%.

Reaction of the ester (3, R= Bu^tMe₂Si) with the magnesium bromide derivative of the p-tolyl sulphone (2) (2 mols) gave, after separation of the unused sulphone, diastereoisomeric keto-sulphones (4, R= Bu^tMe₂Si) (76%) which were transformed into the enol phosphates (5, R= Bu^tMe₂Si) by treatment in tetrahydrofuran-hexamethylphosphoric amide first with sodium hydride, and then with diethylphosphorochloridate. Reaction with sodium amalgam in tetrahydrofuran and dimethyl sulphoxide at 0°, followed by replacement of the protecting ether groups by acetate residues gave (53%) the en-yn-ene diacetate (6, R= Ac)². Semihydrogenation over Lindlar catalyst gave (86%) 1α-hydroxy-precalciferol₃ diacetate (8, R= Ac), which after thermal isomerisation and deacetylation provided (60%) 1α-hydroxyvitamin D₃ (7), m.p. 138-140°, [α]_D^{2O} +28.9°(Et₂O), with spectral data identical with those of authentic material².

Central-trans-conjugated trienes VCH=CHV¹ can be obtained⁷ from the sulphone VCH₂SO₂Ar and the aldehyde V¹CHO by the use of M. Julia's⁸ reductive elimination of acyloxy-sulphones; we have found⁹ that in those cases where V or V¹ bear an alkyl branch adjacent to the new double bond the reaction is highly trans-stereoselective. By this method we have effected a synthesis of tachysterol₃ (isolated as the 4-methyl-3,5-dinitrobenzoate) from the p-tolyl sulphone (2); and since tachysterol₃ can be converted photochemically¹⁰ into precalciferol₃ in a highly efficient manner, it was apparent that a new route was available to 1α -hydroxyvitamin D₃.

The ester (3, R=Bu^tMe₂Si) was reduced with lithium aluminium hydride, and the product was oxidised with manganese dioxide in light petroleum to give the corresponding aldehyde. Reaction with the lithium derivative of the p-tolyl sulphone (2), followed by treatment with benzoyl chloride, gave the mixed isomeric benzoyloxy-sulphones (9, R= Bu^tMe₂Si), which were reduced with

sodium amalgam in tetrahydrofuran-methanol to give the 1α -hydroxytachysterol₃ derivative (10, R= Bu^tMe₂Si). Irradiation¹⁰ in benzene containing fluorenone gave the corresponding 1α -hydroxyprecalciferol₃ derivative, and after thermal equilibration the protecting ether groups were removed with tetra-n-butyl-ammonium fluoride in tetrahydrofuran. Crystalline 1α -hydroxyvitamin D₃ was so obtained in a yield of 57% overall from the allylic alcohol (1), or about 12.8% from cholesterol. This route therefore provides a relatively efficient approach to the compound (7), and it may be suitable for extension to 1α ,25-dihydroxyvitamin D₂.

References

- 1. M.F.Holick, E.J.Semmler, H.K.Schnoes, and H.F.DeLuca, Science, 1973,180, 190; D.H.R.Barton, R.H.Hesse, M.M.Pechet, and E.Rizzardo, J.Amer.

 Chem.Soc.,1973,95,2748; A.Fürst, M.Labler, and K.-H.Pfoertner, Helv.
 Chim.Acta, 1973,56,1708.
- 2. R.G. Harrison, B. Lythgoe, and P.W. Wright, J.C.S. Perkin I, 1974, 2654.
- B.Lythgoe and I.Waterhouse, <u>Tetrahedron Letters</u>, 1978,2625; <u>J.C.S. Perkin I</u>, 1979,....
- 4. R.S.Davidson, W.H.H.Günther, S.M.Waddington-Feather, and B.Lythgoe, J.Chem.Soc., 1964, 4907.
- 5. P.S.Littlewood, B.Lythgoe, and A.K.Saksena, J.Chem.Soc. (C), 1971, 2955.
- 6. P.J.Kocienski, B.Lythgoe, and D.A.Roberts, J.C.S.Perkin I, 1980,....
- 7. P.J.Kocienski, B.Lythgoe, and S.Ruston, J.C.S.Perkin I, 1978, 829.
- 8. M.Julia and J.-M.Paris, Tetrahedron Letters, 1973, 4833.
- 9. P.J.Kocienski, B.Lythgoe, and I.Waterhouse, to be published.
- 10. A.E.C. Snoeren, M.R. Daha, J. Lugtenburg, and E. Havinga, Rec. Trav.chim., 1970, 89, 261.

We thank the S.R.C. for a post-doctoral award (to P.J.K.).

(Received in UK 31 August 1979)